Rund um Kreis und Kugel

Kreisgleichung

Um eine Gleichung zu entwickeln, deren Lösungen ausschließlich aus allen Punkten X auf der Kreislinie besteht, zieht man die Definition des Kreises heran:

Ein Kreis ist die Menge aller Punkte, die von einem gegebenen Punkt (Mittelpunkt) den selben Abstand (Radius) haben.

Der Radius entspricht der Länge des Vektors \overrightarrow{MX} :

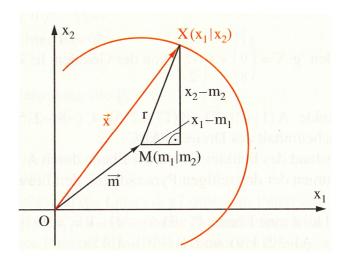
$$\left| \overrightarrow{MX} \right| = r$$

$$\left| \overrightarrow{x} - \overrightarrow{m} \right| = r$$

$$\sqrt{\left(\overrightarrow{x} - \overrightarrow{m} \right)^2} = r$$

$$\left(\overrightarrow{x} - \overrightarrow{m} \right)^2 = r^2$$

$$\left(x_1 - m_1 \right)^2 + \left(x_2 - m_2 \right)^2 = r^2$$
Kreisgleichung



Alternativ kann man die Gleichung auch mit Hilfe des Pythagoras herleiten:

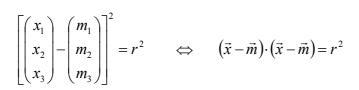
Aus dem rechtwinkligen Dreieck in der Abbildung lässt sich sofort die Kreisgleichung formulieren.

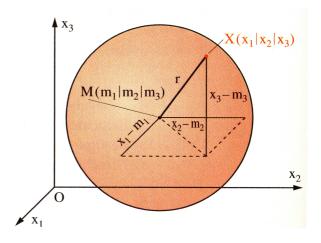
Kugelgleichung

Die Gleichung der Kugel lässt sich entsprechend der Kreisgleichung über den Pythagoras herleiten (vgl. Raumdiagonale im Quader):

$$(x_1 - m_1)^2 + (x_2 - m_2)^2 + (x_3 - m_3)^2 = r^2$$
Kugelgleichung

Alternative Schreibweise:





Kreistangente

Um eine Gleichung zu entwickeln, deren Lösungen ausschließlich aus allen Punkten X auf der Tangente besteht, macht man sich die Tangenteneigenschaft zu nutze, dass die Tangente senkrecht zum Berührradius steht:

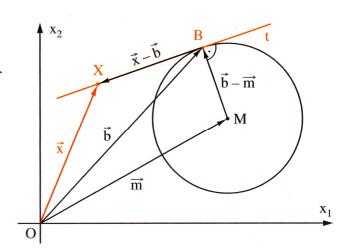
$$(\vec{x} - \vec{b}) \cdot (\vec{b} - \vec{m}) = 0$$
Da
$$(\vec{x} - \vec{b})$$

$$\Leftrightarrow (\vec{x} - \vec{b} + \vec{m} - \vec{m})$$

$$\Leftrightarrow (\vec{x} - \vec{m} - \vec{b} + \vec{m})$$

$$\Leftrightarrow (\vec{x} - \vec{m} - (\vec{b} - \vec{m}))$$

$$\Leftrightarrow (\vec{x} - \vec{m}) - (\vec{b} - \vec{m})$$



folgt
$$(\vec{x} - \vec{b}) \cdot (\vec{b} - \vec{m}) = 0$$

$$[(\vec{x} - \vec{m}) - (\vec{b} - \vec{m})] \cdot (\vec{b} - \vec{m}) = 0$$

$$(\vec{x} - \vec{m}) \cdot (\vec{b} - \vec{m}) - (\vec{b} - \vec{m})^2 = 0$$

$$(\vec{x} - \vec{m}) \cdot (\vec{b} - \vec{m}) - r^2 = 0$$

$$(\vec{x} - \vec{m}) \cdot (\vec{b} - \vec{m}) = r^2$$

$$\left(\vec{b} - \vec{m}\right)^2 = \left(\sqrt{\left(\vec{b} - \vec{m}\right)^2}\right)^2 = \left|\vec{b} - \vec{m}\right|^2 = r^2$$

Tangentengleichung

Tangentialebene

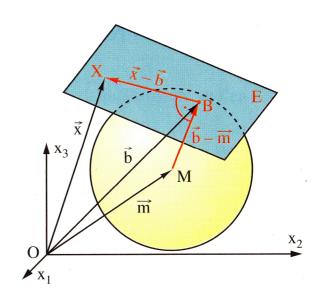
Für die Gleichung der Tangentialebene erhält man ebenfalls:

$$(\vec{x}-\vec{m})\cdot(\vec{b}-\vec{m})=r^2$$

da die Tangentialebene letztlich nur eine Erweitung ins Dreidimensionale darstellt.

Alternativ lässt sich als klassische Normalenform auch formulieren:

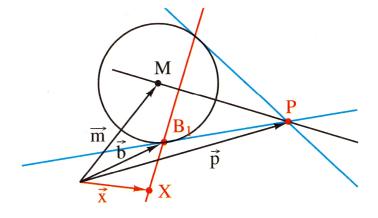
$$\begin{bmatrix} \vec{x} - \vec{b} \end{bmatrix} \cdot (\vec{b} - \vec{m}) = 0$$



Polare

Legt man von einem Punkt P außerhalb eines Kreises die zwei möglichen Tangenten an den Kreis, nennt man die Gerade durch die beiden Berührpunkte die *Polare zum Pol P*.

Um eine Gleichung zu entwickeln, deren Lösungen ausschließlich aus allen Punkten X auf der Polaren besteht, macht man sich die Polareneigenschaft zu nutze, dass die Polare senkrecht zur Geraden MP steht:



$$(\vec{x} - \vec{b}) \cdot (\vec{p} - \vec{m}) = 0$$
 (*)

Da der Pol P Bestandteil der Tangente mit dem Berührpunkt B ist gilt außerdem:

$$(\vec{p} - \vec{m}) \cdot (\vec{b} - \vec{m}) = r^2 \quad (**)$$

Die Addition der Gleichungen (*) und (**) liefert:

$$(\vec{x} - \vec{b}) \cdot (\vec{p} - \vec{m}) + (\vec{p} - \vec{m}) \cdot (\vec{b} - \vec{m}) = r^2$$

$$[(\vec{x} - \vec{b}) + (\vec{b} - \vec{m})] \cdot (\vec{p} - \vec{m}) = r^2$$

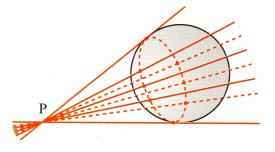
$$(\vec{x} - \vec{m}) \cdot (\vec{p} - \vec{m}) = r^2$$

Gleichung der Polaren

Polarebene

Wie bei Tangente – Tangentialebene so wird die Polarebene durch die selbe Gleichung wie die Polare bestimmt, lediglich erweitert um eine Koordinate.

Legt man vom Pol P aus die Tangentenschar an die Kugel, so erhält man in der Gesamtheit einen Tangentialkegel. Dieser beschreibt mit der Kugel ei-



nen Berührkreis, der in der Polarebene liegt. Der Berührkreis ist somit der Schnittkreis von Kugel und Polarebene.

Lagebeziehungen zweier Kreise (bzw. Kugeln)

- Kugeln von einander getrennt

$$r_1 + r_2 < d$$

- zweite Kugel berührt die erste von außen

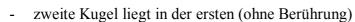
$$\mathbf{r}_1 + \mathbf{r}_2 = \mathbf{d}$$

- Kugeln schneiden sich

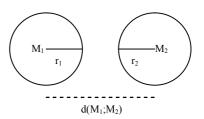
$$r_1 + r_2 > d$$
 und $|r_1 - r_2| < d$

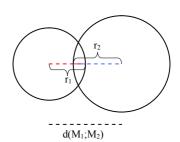
- zweite Kugel berührt die erste von innen

$$r_1 + r_2 > d$$
 und $|r_1 - r_2| = d$



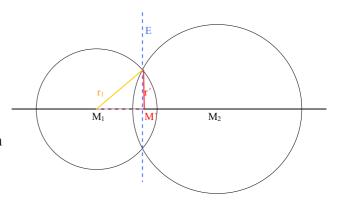
$$r_1 + r_2 > d$$
 und $|r_1 - r_2| > d$





$Bestimmung\ eines\ Schnittkreises\ zweier\ Kugeln$

- 1. Kugelgleichungen ausmultiplizieren
- 2. Kugelgleichungen subtrahieren ⇒ Ergebnis ist die Koordinatenform der
- Ebene, die den Schnittkreis enthält
 3. Schnitt der Ebene mit der Geraden durch die beiden Kugelmittelpunkte M₁ und M₂
 - ⇒ Ergebnis ist der Mittelpunkt M' des Schnittkreises
- 4. Bestimmung der Länge $|\overrightarrow{M_1M'}|$ bzw. $d(M_1;M')$
- 5. $r' = \sqrt{r_1^2 d(M_1; M')^2}$ (Pythagoras)

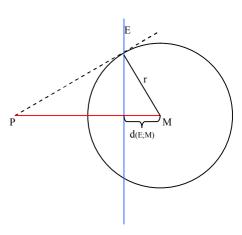


Kugelradius bei gegebenem Mittelpunkt M und gegebener Tangente g bestimmen

- 1. M und g (zeilenweise) in $(x_1 m_1)^2 + (x_2 m_2)^2 + (x_3 m_3)^2 = r^2$ einsetzen
 - ⇒ nach Parameter von g auflösen
 - ⇒ quadratische Gleichung
 - ⇒ Diskriminante der pq-Formel von r abhängig
- 2. Da es nur einen Berührpunkt und damit nur eine Lösung für den Parameter gibt, muss die Diskriminante Null sein
 - ⇒ Diskriminante Null setzen und nach r auflösen

Pol P zu gegebener Polarebene E und Kugel K bestimmen

- 1. d(E;M) = p bestimmen
 - ⇒ Hesse'sche Normalenform
 - \Rightarrow Vorzeichen beim Ergebnis beachten, um die Ausrichtung von \vec{n} bzgl. M zu ermitteln
- 2. Mit dem Kathetensatz den Abstand d(M;P) = c berechnen
- 3. $\vec{p} = \vec{m} \pm c \cdot \vec{n}_0$ (je nach Ausrichtung von \vec{n})

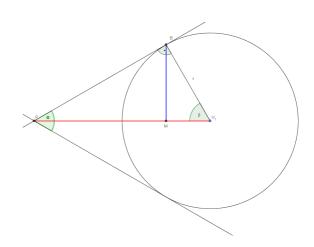


Berührkreis eines Tangentialkegels

- 1. Pol in die allg. Gleichung der Polarebene E einsetzen ⇒ umformen in Koordinatenform
- 2. Schnitt von E mit der Geraden g durch P und M (Richtungsvektor von g ist der Normalenvektor von E!) ⇒ Mittelpunkt M' des Berührkreises
- 3. Schnittradius: $r' = \sqrt{r^2 d(M; M')^2}$

Öffnungswinkel eines Tangentialkegels

$$\sin\left(\frac{\alpha}{2}\right) = \frac{r}{d(M_1; P)}$$



Bestimmung der Spitze des gemeinsamen Tangentialkegels zweier Kugeln

Es sei oBdA $r_1 \le r_2$ und $a = d(M_1; P)$

Strahlensatz:

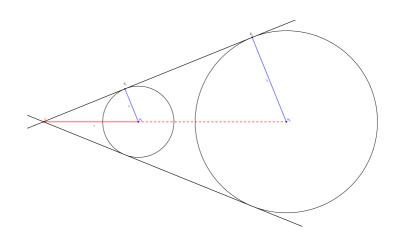
$$\frac{a+d(M_1; M_2)}{a} = \frac{r_2}{r_1}$$

$$1 + \frac{d(M_1; M_2)}{a} = \frac{r_2}{r_1}$$

$$\frac{d(M_1; M_2)}{a} = \frac{r_2}{r_1} - 1$$

$$\frac{d(M_1; M_2)}{r_1} = a$$

$$\frac{r_2}{r_1} - 1$$



Es sei $\vec{u} = \overrightarrow{M_2 M_1}$:

$$\vec{p} = \vec{m}_1 + \frac{d(M_1; M_2)}{\frac{r_2}{r_1} - 1} \cdot \vec{u}_0$$

(Sind die Kugeln gleich groß $(r_1 = r_2)$, erhält man für den Nenner Null; somit existiert für diesen Fall (logischerweise) kein Pol).